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The aim of this work is to propose a method for testing the integrability of a model partial differg?iia)
and/or differential difference equatigBDE), by examining it in dinite but largedomain. For monoparamet-
ric families of PDE/DDE's, that are known to possess isolated integrable points, we find that very special
features occur in the finite domain remnant of the continytpisonon”) spectrum at these “singular” points.
We identify these features in the case example of a PDE and a(BaEsustain front and pulselike solutions,
respectively for different types of boundary conditions. The key finding of the work is that such spectral
features are generic near the singular, integrable points and hence we propose to explore a given PDE/DDE in
a finite but large domain for such traits, as a means of assessing its potential integrability.
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[. INTRODUCTION to the point spectrum were assessed and moreover, this was
not done in direct connection with issues of integrability.
Integrable models of partial differenti@d®DE) and differ-  Here we will, instead, focus on the continuous spectrum; in
ential difference(DDE) equations have been a topic of in- fact, since we will be dealing witfinite but large domains
tense investigation over the past few decafies3]. The Wwe will center our attention around thdiscrete spectrum
main reason for this, except for the wide variety of physicalfémnantthat “becomes” the continuous spectrum in the in-
applications that can be described by integrable or neafinite domain limit. In the finite domain case, titormerly
integrable systems, is that the special case of integrable mogontinuous spectrum becomes discrete due to the quantiza-
els can be analyzed completely by means of the inverse scd{on ©f the wave numbers, imposed by the boundary condi-

tering transforn{1,4]. This can then serve as a starting pointt'on?(sfeteh' €9, fec- I beldvv!{t IS extacttly this _d|sc:ete rem-
for perturbative treatment of near-integrable systems. nant of theé continuous spectrum, that we aim at examining

In the process of these developments, a number of tecrp_ere, to_elumdate its interesting properties in integrable ver-
.SuUs nonintegrable settings.

niqu_es have beer'm developed for assessipg integrability in In the present work, we focus on two model problems, to
continuous(5] or discrete{6] settings(or applicable to both establish our findings and demonstrate their generality. The

[7]). An interesting feature of these “tests” is that they are ,,,qeis are selected as one-parameter families of equations
necessary(but not sufficient conditions for integrability. - g;ch that one member of the family is an integrable system.
Hence, if a model equation fails such a criterion, it is nonin-pareover, in illustrating the generality of the conclusions,
tegrable, but if it passes, it may oray notbe integrable. In  they are selected in a form such that one model corresponds
a sense, this suggests that we still do not understand thg g PDE, while the other to a DDE, so that one is kink
essential ingredientshat render a system completely inte- pearing, while the other is pulse bearing. The models of in-
grable. Of course, should a Lax pair be identified and thaerest will be the parametrically modified sine-Gordon equa-
inverse scattering mechanism be applied, we know that thggon [often also called the Peyrard-RemoisseiRi) model
system is integrable, but it would certainly be desirdbkeis [9,10] and a modified version of the discrete nonlinear
clear from all the above effort to create “integrability tests” Schralinger(DNLS) model(occasionally called the Salerno

to have a mechanisti¢'black box”) type of criterion to  mode) [11]. The former PDE reads

assess that.

We, of course, do not claim to be providing a full answer _du _(1-r)’[1-cog ¢)]
to this question in the present work. However, we will try to b= bxx= @ U(e.r)= 1+r2+2r cod ¢)
give a number of useful hints that may lead to partial an- (1)
swers to the above questions and may provide some intuition
in the effort to construct such mechanistic criteria. in the infinite domain|x|<e and with |[r|<1; while the

Our tool of choice will be the use of different sets of latter DDE is of the form
boundary condition§BC) to examine the spectrum of the
linearization around the nonlinear coherent structure that the  iu,=—A,u,— |u,|?[2€u,+ (1— €)(Upi 1+ Up_1)]. (2)
PDE/DDE of interest supports. Notice that the effect of
boundary conditions in related contexts has been studied in'Bhe most well known among these monoparametric families
number of references; see, e.qg., RE¥], and references of models are the sine-Gordon equatidty. (1), for r=0]
therein. However, in all of these works the effects of the BCwhich is relevant to superconductivity and charge density

1063-651X/2003/688)/0366127)/$20.00 68 036612-1 ©2003 The American Physical Society



P. G. KEVREKIDIS AND N. R. QUINTERO PHYSICAL REVIEW E58, 036612 (2003

waves among other applicatiofig] and the experimentally [l. ANALYTICAL APPROXIMATION
realizable discrete nonlinear Schinger equatioi12] of €

=1, as well as its integrable, so-called Ablowitz-Lagiie] <L/2, whereL is the finite(but large enoughlength of the

counterpart fore=0 in the case of Eq2). ) , ) .
Notice that for the PDE, the subscripts denote partial de§ystem. Notice that our results will be generically trud, is

rivatives of the field, while for the DDE, the overdot denotesChqsen. Iargi_eﬂqugh. By Iarge evough h(lare, Wehmear;] a do-
temporal derivative,A U, =C(Up, 1~ 2U,+U,_1), where main size which is many time@t least 10 larger than the

o b A . .characteristic length of the solitary watdnk or pulse that
C=1/(Ax)" is a constant determlned_ by the !att|ce SPaCING e will examine inside this domain. We will take into ac-
AXx; the subscriptn denotes the lattice site index. In the

former case, there exist kinklike solutions which have beenCount different kinds of BC, in particular, free

detailed in Refs[9,10], while in the latter, the field is com- f (—L/2)=0, f(L/2)=0, (6)
plex and there exist pulselike solutions of the fouy

=exp(At)v,, whereA is the frequency of the solutions and fixed

v, its (rea) exponentially localized spatial profifd.1,12.

In this section we solve approximately E@) when |x|

In the PDE, linearization around a statg(x), using the f(-L/2)=0, f(L/2)=0, (7)
ansatz ¢= ¢g(x) + sexpliot)f(x) into Eg. (1), yields to
0(9) thﬁ ",?g’;ri)zaﬂon S((qa)e?ti(()rz a- M.y and antiperiodic boundary conditidaPBQ
fo ot [02—U"(dou)]F=0 3 fu(—L/2)=—1f,(L/2), f(—-L/2)=—1f(L/2). (8
XX ’ .

_ _ o o First we consider the integrable case; 0, and we show that
Notice that wherr =0 (in the infinite domain limit, ¢o(X)  for the first phonon modes, the eigenfrequencie&®®
=4 arctafiexp)] is the static kink solution of the sG equa- _ ~ fixed ~ap Lo .
tion and for this function, the Sturm-Liouville proble(B) @y, 'andw,” have a double multiplicitywe will denote

can be exactly solvefd4] yielding one discrete mod&old- with tilde the analytical, approximated eigenfrequen)ciéfe
stone modg at =0 and the continuous spectrum repre- proceed, we use the exact solution of probl@or r =0 in

sented by the phonons the infinite domain. We would like to stress that if we change
y P ' the infinite domain by a finite one, with a given BC, we will

_ still have an infinite number of eigenfrequenctesyt for the

o= V1T K, exp(ikx) allowed wave numberk [15]. In order to calculate approxi-

fi(x) = \/ﬂw [k+itanhx)],  (4) mately these allowed wave numbers, we proceed as in Ref.
K [16]. Notice thatf(x)=F(X) +iG(x), where
for all values ofk. Forr#0, neither the static solution nor .
the linearization spectrum are explicitly available in the infi- F(X)= kcogkx) —sin(kxjtant(x) , (9)
nite domain limit. 27wy
Analogously to the PDE, for the linear stability analysis
of DDE (2) we insert exp(At)lv,+JUpe” ““+ W] into cog kx)tanhx) + k sin(kx)
Eqg. (2). We thus obtain tdO(6) the following eigenvalue G(x)= N : (10
problem for{w,{U, ,W;}}: :
Then the solution of Eq(3), with r=0, related to the pho-
U, U, A B non contribution is represented by the linear superposition of
) V\/;) :L(W;)’ _( B —A)’ all the odd[G(x)] and ever] F,(x)] phonon modes
Amn:[A+2C_{4EUﬁ+(1_E)Un[vn+1+vn—l]}]5m,n l/l(X,t)sz [ OF () + B Gi(x)]. (1)

_ 2_
(1= €)va=Cl(dmn+1F Smn-1), Imposing free BC for each phonon mode of EGl) we

obtain that the first wave numbers satisfy
an:_Un[zevn+(l_E)(Un+1+vnfl)]5m,na (5 . B

a(H)[sin(kL/2)[ k?+ cosh ?(L/2)]+k cog kL/2)tanH(L/2)]

where the stars denote complex conjugation. — (12)
The paper is organized as follow. In the following section

we obtain an gpprox_lmate solution for the Sturm-L|ouvn!e b (t)[cos kL/2)[k2+ cosh 2(L/2)]—k sin(kL/2)tanK( L/2)]
problem(3) by imposing different types of boundary condi-
tions in the finite domain of length. The obtained results =0. (13
are compared with the numerical computations in Sec. lll,
where we also computed the solution of Eg). Finally, we
summarize our findings and present our conclusions in Sec.Note that this is true for the continuum problem of E8), but
IV. would no longer be true for the discrete one of E5).
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The solutions of these transcendental equations yield the atespectively, and their eigenfunctions correspond to the even
lowed values ok. We can solve these approximately if we F,(x) and oddG,(x). Then, the first eigenfrequencies are

considerL>1. Then, we find that

n—1
klree=— =7, n=123..., n<L,

- (14

where the zero subscript denotes that we are dealing with the
unperturbed case=0, and its corresponding eigenfunctions

are related with the odd functioi®,(x) for the odd numbers
n and with the even functions,(x) for the even numberns.
Hence, the first eigenfrequencies are represented by

~free_ 1+(_”_1 n<l
n,O L .

(19

2
), n=12,...,

Analogously, for fixed BC the following relations hold;

a,(tH)[k cogkL/2)—sin(kL/2)tanH(L/2)]=0, (16)
b (t)[cogkL/2)tanHL/2) +ksin(kL/2)]=0. (17)
Then, for large enough, we find that
fixed_ 1 _
Kno =™ n=12,3..., n<L, (18
and so,
- n \?
wfXed=\/1+ Ew) , n=12,..., n<L, (19

where the oddeven numbersn are related with the odd
Gn(x) [evenF,(x)] eigenfunctions.

Remark 1.By comparing expressiond5) and (19) we

observe that in the integrable cage=(0) w'"®®=w!*¢ for

the first few eigenfrequencies.
Now by imposing aPBC in each phonon mode of Bd)
and taking into account the symmetry properties—Qfx),

Gi(x) and their derivatives, the equations that the wav

number satisfies can be reduced to

aka(L/Z):O, (20)

Pk Lizy=0
W( )=0.

by (21)

Notice that Eqs(20) and (21) coincide with Eqs(16) (i.e.,
the first equation for fixed BCand (13) (i.e., the second

equation for free B respectively. The solutions of Egs.

(20) and (21) are given by

_2(n—1)77

ka® - , n=23,..., n<L, (22)

2(n-1)m

Kan —— n=123..., n<L, (23

represented by

- 2(n—1)m\?
wﬁ%= \/1+(%) s n=2,3...

~ 2(n—1)m\?
wﬁ%= \/1+(%) , h=12,...,

This means that the eveniodd modes for aPBC
{2 a,(t)Fo(x) {02, bn(1)Gh(X)}] coincide with the
even modes for fixed BCodd modes for free BC

Remark 2From relationg24) and (25) we conclude that
for the integrable case and aPBC the eigenfrequencies have
multiplicity 2.

The analysis of the Sturm-Liouville problef3) for the
nonintegrable case,#0, becomes more complicated since
do(x) is the exact kink solution of Eq1) and this function
is only known in the implicit form[9] (even for the infinite
domain problem So, instead of solving this equation we
calculate approximately the solution of

. n<L, (29

n<<L.
(29

2
d—Z—V(X)—I'W(X)-i-E f=0, (26)

dx
where V(x) = — 2/cosi(x), W(x) =8 tanh§)[x
—5tanh)J/cost(x), and E=w’—wj, with wy,=(1

—r)/(1+r) [10,17. This eigenvalue problem is obtained in
two steps: first we find a solution for smallof Eq. (1),
through the perturbative expansiong(x,t) = ¢sc(X)
+1¢1(X)+0(r?), where ¢sg(x) is the static sG kink and
second we linearize E@1) around the obtained solution up
to order of r, so we insert ¢(X,t)= psa(X)+rd1(X)

+ o] f(x)explwt) +f*(X)exp(—iwt)] into Eqg. (1) and consider
the equation that arises () and obtain Eq(26). Argu-
ably, this approach fails to capture the corrections to the tail
of the wave due to domain finiteness. However, as argued in

Ref. [8], the latter are exponentially small in the length of the

domain. Hence, as will also be justifiedbosteriorj here we
capture the leading order dependenceljnas well as the
leading order effect of [see, e.g., Eq931)—(33) below].
Then, following the procedure of the perturbation methods
for linear eigenvalue problem suggested in R&8], we as-
sume the solution of Eq26) as

En=EnotrEnst o(r?), (27

F(X)=fno0X) +rfo1(x)+0(r?), (28)
where the first subscript in the functioms,denotes the order
of the phonon modegor r <0 this subscript can also denote
the internal modg the second one corresponds to the order
of perturbation. By inserting these expansions in Ezfy)
and equating and collecting the terms of the same order in
we obtain forO(r%),
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TABLE I. For positive and small value af=0.02, we compare L2
the first eigenfrequencies, obtained perturbatively, with the f_L/Zden,o(X)W(X)fn,o(X)
ones computed by solving the original E¢$) and (3), o, . - v (34)
2
n w;ree Z)fnree w:\ixed Z)Lixed wﬁp Z)ﬁp Jl leden,O(X)

0.96117 0.96192 0.96234 0.96352 0.96117 0.96192y,q integrals involved in Eq34) can be computed numeri-

0.96132 0.96129 0.96293 0.96284 0.96293 0'96284cally for different BC and different values of(|r|<1), then

0.96436 0.96514 0.96729 0.96760 0.96436 0.96514yye can calculate the approximated eigenfrequencies in each

0.96560 0.96541 0.96933 0.96899 0.96933 0.96899:3se. We can now compare these results with the numerical

097118 0.97126 0.97604 0.97573 0.97118 0.97126gp|utions of Eq.(3) [for details on the numerical methods/

0.97411 0.97358 0.97989 0.97915 0.97991 0.97915results, we refer the reader to Sec].lI

From the data of the Tables | and Il we observe an oscil-

latory behavior ofw"®®— »!*$¢ for the first phonon’s modes

for r#0. We also notice that the eigenvalues for aPBC lose

fn0=0, 29 their double multiplicity that existed in the case of the inte-

grable equation.

) It is also worth noting that these features are typically

and for the next order correctiad(r), observable in the third decimal digit of the corresponding
eigenfrequencies. On the other hand, the differéne! jus-
tified within the approximations mentioned abpuetween

fo1=[W(X)—E,1Ifno. (30) the theoretical and numerical predictions for the individual
eigenfrequencies is typically in the fourth or fifth decimal
digit. Hence, the observations of the previous paragraph are

Notice that Eq.(29) corresponds to the integrable case Systematic and in agreement with the theoretical predictions.

=0 already solved for frefEq. (15)], fixed [Eqg. (19)], and

antiperiodic BC[see Eqs(24) and (25)]. Notice also that 1. NUMERICAL RESULTS AND DISCUSSIONS

Eno= 030~ 1=kZ o and that its corresponding eigenfunction

fh.o(X) is related either with the od@,(x) or evenF,(x).

Then, for different boundary conditions, the eigenfrequencie

of Eq. (26) are determined by

o0k wWwN PR

d2
e V(X)+Eno

d2
@ —V(x)+ En,O

To find the numerical solution of Eq¢l) and (3), we
giscretize the equations in a numerical mesh for a finite do-
main. The mesh consists of thé+1 points x;={—L/2
+jAx, j=0,1,2 ... N} defined in the finite length of the
system (Ax=L/N). Notice that since, in this case, we wish
o *= i+ (kg9 2+ TE[SS, (31) to emulate the behavior of the PDEx is very fine (typi-

cally 0.05), and the robustness of the findings upon variation

) of the (smal) Ax has been verified. When we compute the
wn 0= Jopnt (ki )2+ IELL, (82 solution either of the PDE or of the linearization equation,
we consider three different types of BG)—(8). We would
like to remark that this kind of discretization of the Sturm-
Liouville problem(3) only affects the last phonon modes, so
we can compare the behavior of the first phonon modes ob-

w3P= b+ (K3R)2+rEZD, (33)

wherek['s®, kl'se?, andk3f are given by Eqs(14), (18),  tained in the preceding section with the numerical solution of
and(22) and(23), respectively. Eqg. (3). In both cases, the distributions of these eigenfre-

The solution of the eigenvalug, ; for the first-order cor- quencies are determined by the parameteand by the
rection is given by different boundary conditions in the finite domain.

TABLE Il. We provide the same comparison as in the previous table for a negative value of

—0.02. Here{}; and(Q; represent the internal mode calculated by the perturbation method and computed by
numerical solution of Eq(3), respectively.

free ~ fixed ~ fi ap ~
n w, w:]ree ), wglxed ®§ wﬁp

(;=1.03560 (),=1.03977 ;=1.03560 (),=1.03924 ;=1.03560 () =1.03977

1 1.04131 1.04129 1.04278 1.04271 1.04156 1.04058
2 1.04156 1.04058 1.04367 1.04303 1.04278 1.04271
3 1.04524 1.04506 1.04866 1.04835 1.04694 1.04625
4 1.04694 1.04625 1.05125 1.05057 1.04867 1.04835
5 1.05306 1.05257 1.05838 1.05770 1.05657 1.05564
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FIG. 1. Comparison of the eigenfrequencies of tldéscrete L ) . .
remnant of thg continuous spectrum for fixed and free BC: We FIG. 3. Antiperiodic BC: the difference between the numerical

have plotted the difference between the eigenfrequencies comput égenfr?quen:les computted from_E((i)ian(j tlhi bapd hedge (thhe
from Eq. (3) and wpn=(1—r)/(1+r) vsr. The circles joined by . ormtterycon mt(;ouSspec _rumo%h—(_ Ir) ( . r(} E’S O\I,Yc:]ll' i d
solid line (free BO represent how far the frequencies are from the/acent €igenmodes are given by circles joined by solid fine an

lower phonon mode. The triangles joined by dotted lines correspongiangles joined by dotted line. The relevant internal mode is shown
to fixed BC y circles joined by solid linéthe first curve from beloyw

(1) For fixed BC, the band edge frequency is prohibited.
Hence, we compare!®® with »/*¢?. We find thatfor small
_ _ _ wave numbersfixed and free BC eigenfrequencies practi-
gio\yvsly t?;?ufggg%_cuEO:JH);;JNééfUW:OBWJ jrc])d VV\\//N cally coincideonly in the integrable case, whereas for the
S NfldW —0 h.'I ; iodi .B%'U a LT : U 0 nonintegrable case we observe an oscillatory behavior of this
» andWy=0, while for periodic 0T ¥N-1» ¥N  function [see Figs. 1 and ]2 In Fig. 2 we also show the
=U1, Wo=Wy-1, andWy=W;. ~ fixed

; ; T free__ i _
Our results when the parameter of the PR potential ior ?sgllitorﬁﬁehawfor Of)io Ozw(”‘l ' (:k_)tamlet)jsfro(;n t_h(e) ggr
the DDE are varied can be summarized in Figs. 1—6. urbation theary, fofr ==1.9< (open triangiesandr =2

. . (open squargs

. From the above results, the following conclusions can be (2) For antiperiodic BC, the spectrum comprises of modes
rawn. coming alternately from the free and fixed BC. This seems

natural as the free boundary conditions select eigenmodes

We also compute the solutions of DDE) and Eq.(5)
using 200 points andx=0.75. The BC are defined analo-

0.003

©m o 0.001
4
EEREEE :
I 3
A h 5
A g
Voo Vol i i +
. oooon bR J
o P I el leleteletd |
= r%—vq'{,[,‘.;||!i|!|""' 3
=1 0 T O O I A O A T 2 -0.001 ¢
g -0.001 T g N 2
ol Y U A A VN A VA A 3 r
o BRIERUERTRRT RN
S Sy oy oy g
g-0.002 | Iy O O .
é é 8 8 é
a & 8
-0.003 : : : = , : ;
0 5 10 15 20 G5 5 0 15 20
n n
FIG. 2. The difference between the first frequencies for free and FIG. 4. Antiperiodic BC: We show the difference between
fixed BC, »/"®®— w!*%9 (2<n=<20), is plotted as a function of the wPe"0d— Period ys n (n=2,4,...,20). Thestars practically at
wave number for =0 (circles joined by solid ling r=—0.02(tri-  zero for alln represent the integrable system=0), whereas the

angles joined by dashed linendr =0.02(squares joined by dotted  jong-dashed (= —0.02) and dottedr(=0.02) lines correspond to
line). The open trianglesr = —0.02) and squares €0.02) repre-  nonintegrable casegnumerical results With triangles ¢=
sent the differences between the frequencies obtained by the pertur-0.02) and circlesr(=0.02) we plot the eigenfrequencies obtained

bation theoryw™®—»/*%¢ in the preceding section. from the perturbation theorganalytical results
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FIG. 5. The oscillatory behavior ab"*®— w/*¢%in the nonin- FIG. 6. Periodic BC for AL-DNLS(Ablowitz-Ladik DNLS) of
tegrable casee=0.1) is shown for the first wave numbeigee the  EQ. (2): The solid line at zero represents the difference between two
squares joined by dashed lindhe circles joined by solid line are consecutive frequenciesit2,4, . . .) for theintegrable AL lattice
the results for the integrable system=0). (e=0). The double multiplicity of the frequencies is destroyed as

is increaseddotted, dashed, and dot-dashed lines represent the non-
integrable cases of=0.1,0.5,1, respectively
symmetric at the boundary, the fixed ones select modes an-
tisymmetric at the boundary, while the antiperiodic BC allow
for both (cf. Figs. 3 and %

(3) An additional feature, equally important &b (espe-
cially in view of its potential predictive powgiis the fact
that for the integrable case o0, antiperiodic BC essen-
tially imply the presence ofloubleeigenvalues. The differ-
ence between the two eigenvaluesOi10~°) for all pairs
(except for the cutoff, discretization induced phenomena at In conclusion, we have proposed and used a test for re-
the upper end of the spectrum which are irreleyafhis is  vealing the potential integrable nature of a given model prob-
in sharp contrastin particular, for small wave numbgrdo  lem. By varying the boundary conditions of a finite domain
even mild breakings of integrability, as can be inferred fromcomputation and examining the effects of such variations in
Fig. 4. the (continuous-turned-discretepectrum, we have revealed

(4) Statements1) and(3) above can be used in predictive that the small wave numbers have singular ways of respond-
form and constitute the criteriofalgorithm set forth in this  ing to the unique parameter values for which the model is
work: for a given PDE/DDE model, we find the steady stateintegrable. These singular featudesich as an approximate
coherent structuréi.e., solitary wave in a finite but large identification of fixed with free BC for smak eigenvalues
domain. This can be done, e.g., by finding the exact solutiomnd the double multiplicity of eigenvalues for periodiar
of an ODE or numerically performing a Newton-type algo- antiperiodi¢ BC] can be used to identify and single out the
rithm. Linearize around the exact, finite domain solution andntegrable behavior. We have provided two model examples,
study, in particular, the small wave numbers, close to theespectively, for kinks and pulses and for a PDE and a DDE.
lower edge of the spectruiiwe assume that the problem is Independently of the detailed structure of the model these
monoparametric in what follows, but it is clear that the ap-properties have been identified as universal and have been
plication of the criterion does not require thatf for a  supported also by analytical considerations. It would natu-
critical/singular value of the parameter the fixed BC and freeally be of interest to explore the potential usefulness of such
BC (smallk) eigenvalue spectr@f the remnant of what for a criterion in various more complex settings.
the infinite domain was the continuous spectyuassentially
coincide and the multiplicity of antiperiodic BC eigenvalues
becomes double, then the model for this unique value of the
parameter can be “strongly suspected” to be integrable. We We would like to thank JésuSaichez-Dehesa for the
use the above expression, as we provide no rigorous proofiseful discussion on the perturbation theory in the Sturm-
but only supportingbut rather universal in distinct models Liouville problem. This work has been supported by the
with distinct features/solutionsnumerical evidence for this Ministerio de Ciencia y Tecnologiof Spain through Grant
statement. No. BFM2001-3878-C02 and by the Junta de Andalum-

(5) We have also tested the validity of these results in Eqder Project No. FQM-0207N.R.Q). It has also been par-
(2), in the vicinity of the integrable limit=0, with similar tially supported by NSF under Grant No. DMS-0204585, a
conclusiongsee Figs. 5 and]6Indeed, in Fig. 5 we observe University of Massachusetts Faculty Research Grant and the

the oscillatory behavior ab!"®®— »!*%in the nonintegrable Eppley Foundation for Resear¢R.G .K).

case, in Fig. 6, we show the case of periodic BC, where it
can be clearly seen that it is only for the integrable case that
the double eigenvalue multiplicity is obtained.
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